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SUMMARY

An analysis of the effects of nonequilibrium ionization and
non-grey radiation in hypersonic shock layers is formulated, Two
essentially distinct models are used: (1) A Ferrari-Clarke Model
for photoionization in an éffectively “orey" gas and (2) A non-grey
step function model for radiative nonequilibrium, Some difficulties
associated with the numerical solution of the resulting two-point

boundary-value problems are discussed.



I. INTRODUCTION

The problem of inviscid radiating flows over blunt bodies has
been the subject of numerous studies in recent yea'r:s.l.7 Gross
features of -the phenomena are understood at present, although results
obtained this far are limited by assumptions of local thermodynamic
equilibrium (LIE), “grey" absorption coefficients, and radiatively
inert gas in front of the shock. A more realistic approach for air,
the gas of engineering interest, is quite cumbersome owing to
numerous chemical species and reactions entering into the ionization
kinetics and the fact that line radiation in air is not simply
related to electron production rates. Therefore, the present approach
treats a model (monatomic) gas where the relationship between chemical

and radiative nonequilibrium is reasonably well understood.

The report essentially consists of two parts (Sections II and III),
with emphasis on different aspects of the problem, Section II is con-

cerned with the analysis of nonequilibrium radiative and collisional
— /\/-\__\___\/—’—\__,_— —_— T N—
jonization; these effects have an important influence on the flow
observables associated with vehicles in hypersonic flight at high
—— e e
altitudes, The problem is formulated for a monatomic gas obeying

the radiative model of Clarke and Ferrarig; in this context a one-
dimensional model of the shock layer around a blunt body is

— —_— T T ——
investigated, The analytic statement represents an extention of the

"~ work of'Chien9 for the case of a grey gas in local thermodynamic

equilibrium,



radiative properties of high temperature gases on the heat transfer
m r‘"\——\_,_\\/ P Y
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near the stagnation peint of a blunt body. This class of effects is
T (/\\_'

important for hyperﬁélocify flight at altifudes lower than those
considered in Section II, namely at altitudes where the absorption
of radiation in the shock layer dominates the flow dynamics while
the ionization has only moderate influence thereon. Inspection of
absorption coefficient data for air in the temperature range between
10,000 and 15,000 K indicates that the actual coefficient may be
approximated by step functions}0 Accordingly, the differential
(moment) approximationll-13 of radiative transfer is extended to
the case of non-grey gas with stepwise approximation in the frequency
dependence. The approximate radiative transport equations are applied
to the study of stagnation point flows, extending the treatment by
Cheng and Vincenti7 for a grey gas, It is emphasized that the motiva-
tion here differs from that of Section I1 in that the gas is considered
thermally and calorically perfect and nonreacting; however, radiative
transport and radiative heat flux are included in the formulation of the
energy equation.

In view of the common nature of the two problems and of similar
numerical difficulties associated therewith, a joint discussion and

presentation is given in this report,



II. INVISCID RADIATING SHOCK IAYERS WITH NONEQUILIBIRUM
RADIATIVE AND COLLISIONAL IONIZATION
It is well known that under conditions of low density and high
temperature, P g shocks
generated by hypersonic vehicles at high altitude, the degree of the
ionization lags considerably behind the equilibrium values. Although

8
some recent papers °’

have considered nonequilibrium effects on shock
wave structure, the related problem of radiating shock layers with
nonequilibrium radiative and collisional ionization has not been
treated analytically,

The governing equations for a gas with nonequilibrium radiative
and collisional ionization are very complex? In the following, we
shall adopt the simplified model considered by Clarke and Ferrari?
Also, following Yoshikawa and Chapmanl, and Chieng, we represent the
shock layers by the inviscid flow through a normal shock wave into a
cold, black, and porous planar wall, Such an analysis provides a
qualitative pictufe of the flow field and of the nonequilibrium
radiation field near the stagnation streamline of a blunt body.

In the absence of thermal conductivity and viscosity, the

equations of continuity, momentum, energy, and state for the one-

dimensional, steady flow of a monatomic gas are

pu =T 2.1
2
p+ pu =I‘C1 (2.2)
5 u2 WZ |
PERT(1+a)+§]+I‘am:J.+qJ. =T 1 (2.3)



and

P = ART(14Q) (2.4)

where p is the density, u the velocity, p the pressure, T the

temperature, R the gas constant, qj the radiative heat flux, and &
n

the degree of ionization defined by o = Y and n, the number

A
1 A
densities of ions and atoms, respectively, I', c, and W, are the constants

1 1
of integration with subscript 1 denoting condition at upstream infinity.
Tj is the ionization temperature defined by the relation E, = ij where k
is the Boltzmann constant, and Ej the energy required to remove an
outmost electron from an atom is in the ground state,

If the wall is maintained at zero temperature and the stand-off

distance is £, the radiative heat flux is given by

q;(m = an'”w sgn(n-n") 8(n") E,(Jn-n"{dn’ (2.5a)
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where Ez(ln-n'l) = I exp[' ‘ﬂ;n—ljdm is the integro-exponential
o]

function, m and Ny are the optical thickness defined by

n = r p(l-x)xdx (2.5b)
o

v _[L p(1-)xdx (2.5¢)
(o]

. 8
X is the absorption coefficient at the frequency-qiper unit mass of atom



and S is the source function
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In (2.5d) the asterisk denotes the equilibrium degree of ionization

given by the Saha equation

The rate equation, as given by Clarke and Ferraris, is

do 993 KO o2 2 @.6)

where Te is the local characteristic time of the collisional
ionization.

Eqs.(2,1-2,6) represent a determined set of integro-differential
equation for 8ix unknowns p, p, T, qj and &, If the differential

11-
approximation 13 is employed, eq.(2.5d) can be replaced by

dq,
3= - (I-9) @.7)

and

where Io is the average radiative intensity.



These approximate radiation-transport equations together with
the remaining equations then constitute a determined set of purely
differential equations,

For the purpose of solution it is convenient to recast the
noted system of equations in terms of new depenedent and independent
variables; in this way the problem can be reduced to the integration
of two simultaneous equations of the first order, Thus, we first

introduce a dimensionless velocity v such that

u

v = 2.9)
From Eqs. (2.1) and (2.2), it is immediately apparent that ¢, =
ul[l + —1—] ¥ u, for wé >> 1, With the aid of Egs. (2.1) and (2.2),
the state equation (2.4) in terms of v becomes

civ(l~v)
= ———— 2,1

T R(1+x) (2.10)
Substitution of Egs, (2.9) and (2.10) into energy equation (2.3)
leads to

W q,
2 5 1 i
v -EV+7—Z+ ) (2.11)
2C1 2C1p
_ oKL . 15 .

where Z = —3~ . Following Heaslet and Baldwin'~, we then introduce

Zc

1

tne variable

=@ - v? (2.12)

so that



v(n) =-§* - (sgn n) [e(n)? (2.13)

and the energy equation (2.11) takes the form

8 «8_=2+q, (2.14)

where

B =S~ ==-
2
®© 64 ch 64 4 (1+Y}€)
q
and q is the dimensionless radiative heat flux defined by q = 2
2¢.T
1

It is apparent from Eq.(2.14) that §_ is the value of § in the
Limit condition Z = q, = 0. When M~ =, > 2_ - 0.1406;
consequently 6_ < 0.1406.

The process of recasting the governing eqﬁations is continued by

introducing the dimensionless radiative quantities G and F

I
G = g’ (2.153)
2c1r
| 2 _ 7 -z |
- 58 ) ) L) ol - 1))
F = 2% = 2= - exp| -T (= -~ =— (2.15b)
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whereKE—Z—l and
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is the inverse Boltzmann number, The radiation transport equations

(2.%) and (2.8) can then be written in the form

dd - _ (e .
3% G - F), (2.16)



= 3q (2.17)

The rate equation (2.6) can be written as

2 ,Z.-2%
. dz , dq _ Z [ . Z_) (E.L.__)]
an T an s W8z M- UF) B3 (2.18)
j Z h|
where
2e4 ﬂkTo T
M, = S [ o eme(- )
a rxman e )

.. %;@:f ext] - 1,(3 - 1) ]
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P, and To denote the density and temperature at some reference condition,

RT,

and Zj = ——EJ-(consequently Z = aZj and Z* = a*Zj). The dimensionless
2c

1
quantity Nb is a Damkohler number corresponding to the ionization
a -

reaction, i.e., the ratio of the relaxation length to the radiation

free path14. When Ny — =, the radiation field is in local thermo-
a

dynamic equilibrium,

Substitution of Eq. (2.16) into Eq.(2.18) leads to

dz z z \2 (B
aﬁ=G'F+NDagE'j'[1'&'z? (zj-z)] (2.19)

Elimination of q from Eqs.(2.14) and (2,17), yields

d6
I = 3(8,- 0 + 2) (2.20)



Differentiation of Eq.(2.14) with respect to 1 with the aid of

Eq.(2.16) leads to

e _daz

ST@EtF-¢ .21

or,in view of 2.19),

2 ,2 . -2%
8w £ [1- &) G
J

Eqs. (2.19), (2.20) and (2.22) provide three coupled ordinary
differential equations for the three unknowns G, Z, and 8. The

boundary conditions for the shock layers problem are

n-eo,G=F, Z=2k 0=6_+ Z%, (2.23)

and

n=mn, 6=m (2.24)

Eq. (2.24) is the radiative boundary condition (differential approxi-
mation) when the wall is maintained at zero temperature, The values of
marem =4 3 for the Marshak boundary condition and m = 2 for the

12,13

Mark boundary condition . With the aid of Eq.(2.14), the boundary

condition (2.24) can be rewritten as
n=mn, . G = m(6_-6_-2) (2.25)

where Sw, the value of 6 at the wall, is a given parameter of the

problem,



The structure of a normal shock was can also be studied on the
basis of the noted equations together with the boundary condition (2.23)

and
easia

’r'-om,G:F,Z=Z*’e=em+z* (2.26)

It is worth noting that Egs.(2.19), (2.20) and (2.22) are a
set of autonomous ordinary differential equations since the in-
dependent variable 7 does not appear explicitly on the right-hand
side. We can, therefore, reduce the number of equations tao two
by using any of the variables G, Z and § as the independent
variable, For this purpose, we divide Eqs.(2.19) and (2.20) by

Eq.(2.22) to obtain

ag . 3(6_ -6+ 2) @.27)
db 2 Z_-7% y
v 2 - &) G
- N2 2T
w STl &) @) ] .

de 2 Z.- IX
N, ?Z—j[l i (':7?) (E'JL-_Z) ]

viz, two coupled differential equations, in the dependent variables
G and Z, similar to the equations obtained by Emanuel16 in the study
of the structure of a normal shock wave with vibrational nonequilibrium,

The boundary conditions associated with (2.27) and (2.28) are

G(8,) = F(8y) = %(%) exp[- TJ.(;—I- - ﬁ) ] , (2.29)

10
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2(9)) = 8; - 8, = Z*(3)

and

1]

G(Gw)

Thus the problem of radiating shock layers with nonequilibrium
radiative and collisional ionization reduces to the solution two
coupled first-order, non-linear, ordinary differential equations
(2.27) and (2.28) with two-point boundary conditions (2.29) and
(2.30).

A few comments are in order with regard to the numerical
integration of equations (2.27) and (2.28). In the work reported
here an iterative procedure has been investigated whereby the degree
of ionization (i.e.q2) at the wall is chosen arbitrarily and the
numerical integration of Eqs. (2.27) and (2.28) proceeds independently
from the end points. It should be noted that the independent
variable 8 and the dependent variables G and Z are continuous functions.
Thus, if the subscripts a and b ﬁo denote the two branches of G and Z
starting respectively from upstream infinity (Ga and Za) and from the
wall (Gb and Zb), the unique solution is identified by the intersection
of the two branches of G and Z at the same 0s. The proper value of Zb
at the wall is the one that satisfies this condition. Once 2 and G
are obtained as a function of 6, the velocity, temperature, and
radiative heat flux can be determined from Egs.(2.10), (2.13) and

(2.14), while the physical coordinate 71 can be found by the quadrature

11

e, -6, -26,)] (2.30)



ﬂ=r

N =

Z - 2F + Constant (2.31)

w, 21 (5) G57) ]

Eqs.(2.27) and (2.28) are singular at upstream infinity., To
start the numerical integration from upstream, the usual method of
linearization about the singular point must be employed. Accord-
ingly, one set G = G(61) + Gl, Z = 2% + Zl, 8 = 61 + 91;
substitution into Egqs.(2.19), (2.20) and (2.22) and linearization

readily yield G1 = Zl, and 61 = 0 near upstream infinity, Since

upstream of the shock, the slopes gg' and %g are very large,

Eqs. (2.27) and (2.28) are not suitable for numerical integration. In
this region, it is convenient to use G as the independent variable.

The equations to be integrated are then

*
Z . E_.Z Z.-Z
G-FNp gt \%) 7.2
dz a j / ]
az _ (2.32)
d¢ 3(8, - 0 + 2)
VA z i
Nna 7 (;F) (z.-z )]
a0 _ J - (2.33)
ac

3(6@- 8+ 2)

On the downstream side of the shock, Eqs.(2.27) and (2.28) are to
be integrated.
The parameters appearing in the governing equations and in the
boundary conditions are N x NB » O
o

has been attempted for the model blunt body problem assuming Helium gas

and Gw. Numerical integration

7 -24
(R=2,07x10 cmzsec °K, Tj = 285,000°K, m = 6.692 x 10 gm)

12
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N, = 0.0361, N = 36.38 , 6, = 0.140137 , and § = 0.24; these
o]

a } v
conditions correspond to upstream temperature T1 = 300 K, pressure
“A-z
p = 10  atm, and Mach number ﬁl = 29,6, Numerical integration of

Eqs. (2.32) and (2.33) from upstream infinity and that of Eqs.(2.27)
and (2.58) from the wall has been performed by means of an Adams-
predictor-corrector routine. The integration from upstream infinity
can be obtained once for all (for a particular set of parameters)
without difficulty. Integration from the wall, subject to estimated
values of Z at the wall, becomes unstable near the shock. Fig. 1

shows the unstable behavior of the numerical integration,PorZ (6 ) =
0.099115, G, continuously increases from the wali to the shock,
whereas for zb(ew) = 0,99200, Gb first increases and then decreases.
In both cases, however, the two branches of G do not appear to
intersect.

Considerable effort has been expended in determining the source
of the difficulty, At first it was attributed to the "stiff" behavior
of the equations. However, latef considerations suggest that the
difficulty is intrinsic to the proposed formulation., Specifically,
in the present report both blunt body and noxrmal shock flows are
governed by essentially the same equations. Thus, the singular
behavior of thé two problems is essentially identical, i.e., the

upstream "infinities" are singular points and numerical integration

must pass through these points. But the body location in the blunt

13
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be specified unless an integral curve passing through both
infinities is known. Thus, by specifying body boundary conditions,

the problem is ill posed and must be reformulated to take this effect

into account,

14



III. RADIATING FLOW OF A NON-GREY GAS IN THE
STAGNATION REGION OVER A BLUNT BODY

to a grey gas model ) have been recognized and considered in recent
analyses of radiating flows over blunt bodies (e.g. Ref.10), their
influence on the structure of the shock layer has not been explored
in detail, 1Intuitive physical considerations suggest an appreciable
influence for the cases wherein the absorption coefficient of the
gas varies importantly with frequency and the associated optical
lengths vary (as a function of frequency) from much larger to much
smaller than the shock layer thickness, Under these conditions one
expects to observe regions of rapid temperature variati on adjacent to
the boundaries of the flow, with associated changes in the convective
heat transfer as well as a strong frequency dependence of the radiative
heat transfer. A marked frequency dependence of the absorption
coefficient is quite common in practice; thus, the noted effects are
of practical interest and significance. For illustrative purposes we
will specifically consider in what follows a model gas with a step
function dependence of the absorption coefficient upon frequency; such
a model is representative, for example, of the optical properties of
air in the temperature range 10,000 to 15,000°K.

The analysis is based on an extension of the moment equations
(differential approximation) of radiative transfer to the case of non-
grey gas with step-function épproximation in the frequency dependence.,

| We begin by dividing the frequency spectrum into a number of discrete

15



frequency ranges. In any given range (\)n <v < Vn+1)’ the gas is
assumed to behave according to certain average properties which

give a good approximation to the actual behavior. The moment

equations for each frequency group, v, <V <V, are in the usual
11-13
form
dlqu = - ab(Iov - 4nsv) ' (3.1)
and
d = - q
gra Iov 30:\)qV (3.2)

where q, is the radiative heat flux, Iov the average radiative intensity,
and Sv the source function, If local thermodyﬁamic equilibrium is

assumed, the source function is equal to the Planck function

2> 1
S =B = —5— — (3.3)
v v 2
R
exP\r ) -
With the differential approximation, the radiative boundary condition
2
on the wall of the blunt body is1 )13
}.[.I_gazs.-]=* (3.4)
2L 72 BrATY '

where n is the outward normal of the wall and qi is the one-sided

radiative heat flux from the wall¥,

*The positive sign is taken when the outward normal of the wall is in
the same direction of the positive coordinate whereas the negative

sign is used if it is in the opposite direction of the positive coordinate.

16



For the considered model gas analysis is conveniently carried

out in terms of frequency integrated quantities an’ Jn and Bn ‘

q = f q v (3.5)

\Y)

3 = j nt1 I,
\Y)
n

A\
Pl 2n p ol vidy
B = Bdv =2 —
n v 02 /}_1.\1_1
v Vn  exP\er)

Integrating the differential equations (3.1) and (3.2) and the boundary
condition (3.4) over the frequency interval v, <V < Vn+1(in each

frequency range the absorption coefficient remains constant) we have
- - = - - .6
dlvqn ozn(Jn 4ﬂBn) (3.6a)
and

grad J, =- 3anan , (3.6b)

with the boundary condition

1, -, =7_ % ’
Z[Jn + 25 qn] ¢t (3.7)

The overall frequency-integrated radiative quantities are then

given by

17
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n=0
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= d\):z
= 1, I,
=0
[
0 4
- = = oL
B = I B dv =/ B -
(o]
n=0

In neutron-transport theory, a set of equation similar to that of
Eqs.(3.6) and (3.7) are called the multi-group diffusion equationsl7.

The inverse problem of the axisymmetric flow field over the
blunt body associated with a paraboloidal shock wave has been treated
by Cheng and Vincenti7 for a grey gas. We now extend Cheng and
Vincenti's work taking into consideration the effects of non-grey gas
behavior.

All variables in the following Eqs.(3.9)-(3.15) and in the boundary
conditions [(3.16) - (3.17)] are dimensionless: the velocity components
are referred to the free-stream velocity ﬁm, the density to 5@, the
pressure to Bmﬁi , the temperature to Ts’ and all radiative quantities
to cii. (In the remainder of the report, dimensional quantities are de-
noted with bars and the corresponding dimensionless quantities without, |
Quantities pertaining to the point immediately behind the shock on the
stagnation streamline, and fo the free stream conditions are denoted

respectively by subscripts s and o),

18



The equations of continuity, momentum, energy and state in

the paraboloidal coordinates are

[@nJ%2+n2 pu]g + [ﬁnJ%2+n2 ‘pv] =
n

P
uug + v(un - EME:-DEE—) + = - o,
£+ -

E

!

~ 7
o

+ ;ﬂ =0 ,

1) <“T§ * ”Tn)‘% - (upg + ve,)

P e RICGRR R

n=1 5n(§ tm

[ore + ) ] } -

1
p=—5 T
Ve
oz
where the parameter I” is defined by I = 3
PV

19
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(3.12)
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The radiative transport eqs.(3.6) and (3.7) written in the

paraboloidal coordinates are

[en e+’ & ]g S EN T e

m
(3.14)
a b , .
o)y )
‘BnPnT EUIE +n (Jn'l‘Bn
a b ——
- n .2 2 g
I 38 P oy NSRS (3.15)
a bn 2 2 n )
Ton = “38p T JE+ (3.16)
where we have assumed that the absorption coefficient is of the form
2 2 bn
an = Cn(pmq°° P) “crér) and the parameter B, is defined by B, =
c U 2 2, bn
rs n(p°° - ) T, .
If we assume that the cold gas ahead of the shock is neither
absorbing nor emitting, the boundary conditions immediately behind
the shock (n = 1) are
2.%
u(g,1) = £/(1 + €7) : (3.17a)
v(g,1) = - (v - /[(y+ 1) (1+E)*] (3.17b)

20



p(E,1) =2/[(y+ 1) 1+8)] |, (3.17¢)
T(2,1) = 1/(1 + &%) - (3.17d)
p(E,1) = (\r + /¢y - 1) (3.17e)
J.(5,1) - 2q2 (,1) = 0 (3.17f)

where the strong shock approximation has been used in Eqs.(3.17a) -

(3.17¢). The boundary conditions at the wall are
‘d
v(E,n) - u€,n) (;;&) =0 (3.18a)

and

Haen) + 2 1+ (%)2]% [De.n)

' d
“den) @) ]} -

(3.18b)

where n, is the location of the wall to be determined. As in Ref. 7,
we will now perform the following operations: (1) introduce the
stream function ¥, (2) interchange the roles of n and ¥ by means of
the Von Mises transformation, (3) introduce the normalized variables

P, 6,9

n
n? Qn, Mh such that

w = 2y/e (3.19)
- -1 2 -1
P=2(y+1) " (1+¢&) " P(Z,w)

21
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T =
qEE—-g—Z--Qg (z,w)
n (1+§) n

q ‘-—I—TQn(Z,w)
Toa+eH "

1

J = M (Z,w)
Bo1+gh P

2 2
where Z = £ /(1 + €) is a new independent variable in place of £,
After all these operations, the governing equations in terms of the

normalized variables are:

2
2z(1 - z)nZw - Zumww - an + an [Z(l - Z)'ﬂz - wﬂw]

2n

+—pQ[Z(1 -2Z) B, - 2P -wa] --zanﬂ[z(l - 20,

- 29 - »wew] + Myt nu)s
z+n @ -2)]

b, (1 - Z)[Z(l - 2) n, - mﬂf_
+ L
[z + Q- 2)

ﬂiPsl'ii(l - 2)

2 2
-2nlz+nQA - 2)
TI[ " ] (y+1)29

{ [(1 - Dy - P}"w - @- Z)"zpuu} =0

22
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2n, (1 - z)[2z2(1 - 2)n,, + 2(1 - 4z)nz] - 42(1 - Z)[wnw+ z1 - Z)nz]nzw (3.21)

.‘.\

+ 4zl - Z)num  + 20 [‘”ﬂw +22(1 ‘Z)”z] T [Z(l - Ay - mw:r
+ 4—;& [uqu - z(1~- Z)nz] [Z(l -2) ®, - 2P - wa]

-2 [on, - 21 - 9n,] [z - Do, - 26+ w8,] 4 21, [um, - 261 - 21m,

__mz _emy(1 - o - 201 - Z)nz]2
[z + nz(l_ - z)] Z+ nz(l - 2)

161 [z +n2q - Z)]nwrwpsns

+ 0
(v + 1) )
yP [za - 2)g, - 20~ wewJ - (v - 1) [zu - 2)p, - zP - wa] (3.22)
2 a +b‘-1

n=1

-[z + i - Z)] [Mn - 4(1 - z)3Bn}"% -0
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n L2z(1 Z)Q zn - (22 - 1)Q5 - 2Z2(1 - Z)nz 5 + Qq'ﬂl )

(3.23)
3 - i
[ QT+ Pl B, " gon
12 + B -‘1 ]
ooy [z+7a-2)] v
2
. _ Z+n( - Z)js
[y, - ][22 00T
a
n b a +b -1
3 2P n n n
[(1 i Z)MhZ B Mh]nw -a- Z)nZan + 2 Bn(??i) (1 -2 (3.24)
Z + n2(1 - Z) n
[P e - o (n=1,2,...)
an b
2P abar@ + nf - Z)T‘ E . (3.25)
Myt PolGn) TG -2 T -z %y = ©
(n=1,2,...)
We now apply the method of series truncation. Each dependent
variable is first expanded in a power series in Z of the form
F(Z,w) = Fl(w) + ZFz(w) + ... (3.26)

where subscripts 1 and 2 identify quantities associated with the first-
and second-order problems, respectively. Substituting Eq.(3.26) into
Eqs.(3.20) - (3.25), collecting the coefficient of Z, and setting to

zero quantities with subscript 2, we obtain for the first-order

24



problem(with the subscript 1 omitted)

. 1@
N yee(1'+ %’i) + WMYZK('Y—iT) (y -1)F8 an“n - B)
—_— = n=
dw [4 2.2 4P2 . Yw2]
(y+1)E

d8 _ ap 2/ 2 \ 2 -1
vae G2 = (v-Dw §E - v’ (F) (-nF e

) [nZ_.IBn(Jn B Bn)] =0

3

—_— 2P -1n - .
dw BBH(WI) e Qn m (n 1 12 geee )
and
n
ESE'= - l'[2(71Q§ + Qn) +B (g£—> 9-1 (J_ -~ B) 2] %
dw n n n n\y+1 n n’ T
% el | 2w 4 2 2 p
dw - gt~z ¢t - 32n'K°P XHX__2 By
N . 0 (y+1)
2 dP_ 2xw .d_9.]
P dw 8 duw

The boundary conditions at the shock are

P(1) =6(1) = n(D)

1

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)



() = {&GT (3.34)

- 200
Mh(l) 2Qn(1) | (3.35)

and on the wall

= -2q"
M (0) = -2¢ _(0) (3.36)

Eqs. (3.27)-(3.32) are to be integrated numerically from the

shock (w = 1) to the wall (w = 0). A sample calculation with

¢, =2.7x 107, a, =1, b, = -1 for v < 2.5 x 101 sec™!,
C, =0.108, a, = 1, b, = -1 forv > 2.5 x 101? sec™! and with
Tg = 12 ,000°K, P, = 1 atm, and y = 5 ft., corresponding to the

parameters Bl =5x 10-3, 32 = 1.8 x 103, and " = 1.90 was

attempted.

Two methods were used to integrate the two-point boundary value
problem numerically, The first method was the usual one: to convert
it into an initial-value problem by prescribing two of the unknowns
radiative quantities at the shock (for example Ql(l) corresponding to
the small absorption coefficient al’ and Qz(l) corresponding to the
llarge absorption coefficient aﬁ); the initial-value problem is then
solved numerically by means of an Adams predictor-corrector routine
on an electronic computer, Although this procedure was used in Ref. 7
with no difficulty, the numerical integration becomes unstable in the

present work. It is found that the solution is practically independent
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of the boundary value of Ql(l) (at the shock) but is extremely
sensitive to the boundary value of Qz(l). Small changes in Qz(l)
lead to drastic changes in the solution (see Fig. 2). The second
approach to the two-point boundary value problem was to integrate
numerically on the basis of quasilinearizationls. It was found
that the iteration did not converge and that small changes in
initial distribution led to drastic changes in the solution.

Unstable behavio; of a similar nature has been reported in
the literature19-21. Specifically, Carrier and Averett21 considered
a non-grey radiative transport problem where the absorption coefficients
had disparate frequency independent values on either side of some
frequency bound ‘ separating these regimes. They found that the
resulting transport equation was of the boundary layer type associated
with singular perturbation problems. With respect to the radiative
transport equations, the present problem is entirely analogous to that
of Ref, 21, Thus; it may be concluded that the numerical instabilities
could be removed, as in boundary layer theory, by proper matching of
"inner" and “outer" solutions using techniques of asymptotic expansion

theory.
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IV. CONCLUDING REMARKS

Two facets of the problem of radiating flow over blunt bodies
have been formulated: (1) the nonequilibrium ionization field
and (2) non-grey éffects. In both cases, a slightly modified
differential approximation is employed to take proper account of
the reabsorption of radiation, which is of crucial importance near
the stagnation point,.

The differential approximation leads to two-point boundary
conditions. For numerical integration, the two-point boundary
value problem is converted to an initial value problem. The
difficulty arises as to how to make the successive iteration of
the unknown boundary values converge. The integration is further
complicated by the fact that the equations exhibit numerical
instabilities. The difficulties associated with the two problems
have been discussed in Sections II and III. It appears that
in both cases, integration schemes appropriate to the mathematical
nature of the respective governing equations would succeed in
providing numerical solutions. Further work along these lines
is indicated.

The author would like to th#nk Professor R. Vaglio-Laurin and

Dr. M. I. Hoffert for many discussions.
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Figure 1 Standing normal shock in front of a wall writh chemical
and radiative nonequilibrium: Example of divergent
iterative solutions of Eqs. (2.32) and (2.33) showing
G(0) and Z(6) starting from wall initial conditions
Zb(ew) = 0,099115 and Zb(ew) = 0,09920. G, and Z_ are

the asymptotic upstream values,

32



N

r-

| | I
/ B, #5x10°°
OIS\ preqiorr— Fe FHoxI0’
-(=0.
l .
=006 *'°
()13 ‘:l(l)"CI" —]
T
06
04
0.2
(0

IO 08 06 04 02 O

Figure 2 Blunt body stagnation line for a non-grey gas: Example
of divergent iterative solutions of Eqs. (3.27) - (3.32)
showing T(w) for the shock (w = 1) initial conditions
Q(1) = 0,017 and Q(1) = 0.016.
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